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Machine intelligence has become a driving factor in modern society. However, its demand outpaces the underlying
electronic technology due to limitations given by fundamental physics, such as capacitive charging of wires, but also
by system architecture of storing and handling data, both driving recent trends toward processor heterogeneity. Task-
specific accelerators based on free-space optics bear fundamental homomorphism for massively parallel and real-time
information processing given the wave nature of light. However, initial results are frustrated by data handling challenges
and slow optical programmability. Here we introduce a novel amplitude-only Fourier-optical processor paradigm capa-
ble of processing large-scale ∼(1000 × 1000) matrices in a single time step and 100 µs-short latency. Conceptually, the
information flow direction is orthogonal to the two-dimensional programmable network, which leverages 106 parallel
channels of display technology, and enables a prototype demonstration performing convolutions as pixelwise multipli-
cations in the Fourier domain reaching peta operations per second throughputs. The required real-to-Fourier domain
transformations are performed passively by optical lenses at zero-static power. We exemplary realize a convolutional
neural network (CNN) performing classification tasks on 2 megapixel large matrices at 10 kHz rates, which latency-
outperforms current graphic processing unit and phase-based display technology by 1 and 2 orders of magnitude,
respectively. Training this optical convolutional layer on image classification tasks and utilizing it in a hybrid optical-
electronic CNN, shows classification accuracy of 98% (Modified National Institute of Standards and Technology)
and 54% (CIFAR-10). Interestingly, the amplitude-only CNN is inherently robust against coherence noise in contrast
to phase-based paradigms and features a delay over 2 orders of magnitude lower than liquid-crystal-based systems.
Such an amplitude-only massively parallel optical compute paradigm shows that the lack of phase information can
be accounted for via training, thus opening opportunities for high-throughput accelerator technology for machine
intelligence with applications in network-edge processing, in data centers, or in pre-processing information or filtering
toward near-real-time decision making. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing
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1. INTRODUCTION

In the recent years, deep learning has thrived due to its ability
to learn patterns within data and perform intelligent decisions,
superior in some cases to human [1–3]. Convolution neural
networks (CNNs) lie at the heart of many emerging machine
learning applications, especially those related to the analysis of
visual imagery. From a neural network (NN) point of view, a CNN
extracts specific features of interest, using linear mathematical
operations—convolutions—which combine two pieces of infor-
mation, namely feature map and kernel, to form a third function
(transformed feature map). Interestingly, these convolution lay-
ers are responsible for consuming the majority (∼ 80%) of the

compute resources during inference tasks [4]. In fact, the convolu-
tion between a feature map (n × n) and a kernel (k × k) requires a
computational complexity of O(n2k2) in the real spatial domain,
hence without performing any transformation. This results in a
significant latency and computational power consumption, espe-
cially for datasets comprising appreciably large feature maps, or
requiring deep CNNs for achieving high accuracy [5], even when
the network has been trained and the memory initialized. For this
purpose, data-parallel specialized architectures such as graphic
processing units (GPUs) and tensor processing units (TPUs),
providing a high degree of programmability, deliver dramatic
performance gains compared to general-propose processors.
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When used to implement deep NN, performing inference on
large two-dimensional datasets such as images, TPUs and GPUs
are rather power hungry and require a long computation time
(>tens of milliseconds), which is a function of the complexity of
the task and accuracy required, which translates into manifold
operations with complex kernel and larger feature map.

As it stands, improving computational efficiency of CNNs is
still a challenge, due to the widespread relevance to many appli-
cations. Therefore, it is necessary to reinvent the way current
computing platforms operate, replacing sequential and tempo-
rized operations, and related continuous access to memory with
massively parallelized yet distributed dynamical units, pushing
toward efficient post-CMOS compute paradigms and system
implementations. The intrinsic parallelism, the arbitrary large
space–bandwidth product [6] and simultaneous low-energy con-
sumption make free-space optics a particularly attractive candidate
for deep learning, computing, and particularly for image classi-
fication and pattern recognition using CNNs in real time (low
latency). In this context, as late as the 1960s [7], optical filtering
and correlations, relying on spatial Fourier transform of images
in the frequency domain, were used to extrapolate similarity (spe-
cific features) between images and signatures [8]. Subsequently,
research groups built optical correlators, convolution processors
[9,10] and matrix multipliers [11], with competitive performance
for that period, although the tremendous advancement of digital
electronics frustrated these efforts. However, early successes of such
optical processors did not step beyond prototype stages due to the
lack of practical devices for simulation of neural planes [12] and the
inability to feed these potentially high-throughput (∼ POPS/s)
processors sufficiently with data front end.

Increased data volume and parallel computation requirements
together with recent advances in digital display technology poise
new opportunities for massively parallel optical accelerators.
Optical free-space systems offer processing large matrices (several
megapixels), and the CNN-required convolutions can be per-
formed as simpler pointwise multiplications in the Fourier domain
where domain crossings (from real to Fourier space, and inverse)
are performed passively in a Fourier optics 4 f system. However,
the high parallelism and inherent operations provided by the
nature of optical signal is confronted by the rigidity of the current
optical tools which lack high-speed programmability. For instance,
recent optical systems, used as convolutional layer performing
inference after being trained, rely on fixed kernels, realized as 3D
printer manufactured diffractive masks [13], or slowly varying
(tens of hertz) spatial light modulators (SLMs) [14–16]. On the
other hand, state-of-the-art high-speed (gigahertz) programmable
metasurfaces and tunable optical phased arrays are still limited in
terms of matrix resolution and phase contrast [17,18].

Here, we introduce and experimentally demonstrate a novel
compute paradigm based on amplitude-only (AO) electro-optical
convolutions between large matrices or images using kilohertz-fast
reprogrammable high-resolution digital micromirror devices
(DMDs), based on two stages of Fourier transforms (FTs), without
the support of any interferometric scheme. Low-power laser light
is actively patterned by electronically configured DMDs in both
the object and Fourier plane of a 4 f system, encoding information
only in the amplitude of the wavefront. By individually controlling
the 2 million programmable micromirrors, with a resolution depth
of 8 bit and a speed of 1031 Hz (∼20 kHz with 1 bit resolution),
it is possible to achieve reprogrammable operations for (near) real

time, which is about 100× lower system latency with respect to
current optical convolution accelerators (SLM − based systems10)
image processing, with a maximum throughput of 4-peta oper-
ations per second at 8 bit resolution, emulating on the same
platform multiple convolutional layers of a NN.

Additionally, while this study does not dispute the scientific
understanding that phase information is more important than the
amplitude’s in image processing [18], such as in the transmission
of a continuous tone picture for preserving its visual intelligibility,
for example [19], this study shows that adding robustness to a
system via a training paradigm is capable of accounting for lack
of information (here phase). That is, leveraging on the robust-
ness of the NN, achieved through hardware-specific training,
we show that it is possible to overcome the loss of information
related to phase of the modulated radiation, which enables per-
forming intelligent classification in an opportunely trained CNN
and concurrently achieving high accuracy [Modified National
Institute of Standards and Technology (MNIST) and CIFAR-10
classification] and throughput (10,000 conv/s of ∼2000×1000
large matrices). This architecture experimentally validates the
power of an AO 4 f system optical computing paradigm and
further opens up the NN architectures with components that are
readably available for parallelly performing intelligent tasks in near
real time, such as in free-space communication [20] in data centers
for processing data locally at the edge of the network, without
communicating across long routes to data centers or clouds.

2. RESULTS

The system architecture typology for realizing the amplitude-only
Fourier filter (AO-FF) layer for performing filtering is synergisti-
cally realized in optics [21]; a coherent optical image processor is
based on a 4 f system, in which there are four lens focal distances
f separating the object from the image plane, intercalated by two
Fourier transforming lenses [Fig. 1(a)]. This setup is composed
of an input (object) plane, the processing (Fourier) plane, and the
output (image) plane. The to-be-processed data and the kernel,
which filters them in the Fourier plane, are spatially modulated
according an electro-optic transduction. Conceptually, such a free-
space approach enables three-dimensional parallelism, which is
elegant, since it decouples in-plane (x , y directions) programma-
bility (here provided by the DMD), from the direction of the
information flow (z direction).

With the presumption that phase information is more relevant
than amplitude information [22], other 4 f implementations
rely on phase modulation based on SLMs10. SLMs exploit pixel-
wise phase retardation introduced by the variation of the effective
refractive index through orientation of birefringent liquid crystals
to which a voltage is applied. On the contrary, for our implementa-
tion, this transduction is achieved through a DMD, belonging to
the family of micro-opto-electro-mechanical system (MOEMS).
They consist of micromirror arrays which impose a spatially
varying light intensity modulation by rapidly tilting individual
micromirrors, which deflect input light. In detail, each pixel of a
DMD is comprised of a tilting mirror and a memory unit storing
the pattern to be reproduced; the mirror flips according to the
digital value stored in memory to let the light either pass or being
deflect. Assuming the same pixel resolution (2 megapixel or 4K),
readily available DMDs are characterized by at least 2 orders of
magnitude faster (tens of kilohertz) settling speed compared to
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Fig. 1. Amplitude-only Fourier neural network. (a) Schematic representation of a 4 f system based on DMDs. The amplitude of a low-power light
source is modulated according to a pattern (input data). The image so generated is Fourier transformed and multiplied with a reference data in the Fourier
plane of a 4 f system, affecting only its amplitude. The result of the product is inverse transformed, and the square of its intensity is imaged by the camera
showcasing the same spatial resolution (pixel size and pitch) of the DMDs. (b) Experimental implementation of the amplitude-only Fourier filter based on
a DMD 4 f system. (c) CNN structure for CIFAR 10 dataset. The optical amplitude-only Fourier filter is used as a convolution layer, with the subsequent
layers realized electronically. The kernels obtained during physically meaningful training are loaded in the second DMD. After a convolution layer a
nonlinear thresholding is applied to the output (rectified linear unit function) and are pooled together. A flatten layer collapses the spatial dimensions of
the output into the channel dimension to which follows a fully connected layer and a nonlinear activation function. (d) Flow chart of the training process.
Physical model of the amplitude-only Fourier filter layer is used for training the entire CNN. (c) Obtaining the weights for the kernel to be loaded in the
second DMD of the convolution layer. Experimentally obtained results of the amplitude-only Fourier filtering are fed to the FC layer for performing the
final prediction on unseen data.

SLMs (tens of hertz), making them a promising platform for
optical computing, thus the subject of this study.

In our optical engine [Fig. 1(b)], collimated low-power laser
light (633 nm, He–Ne Laser) is expanded to uniformly interest
the entire active area of the first DMD in the object plane, which,
by independently tilting each micromirror of its array according
to a pre-loaded image, defines the input image (feature map). The
DMD in the object plane is oriented with a 12◦ tilting angle with
respect to the normal incidence and rotated in-plane by 45◦. Light
reflected from the DMD is Fourier transformed passing through
the first Fourier lens at one focal length, f , apart from the first
DMD in the object plane. The pattern in the second DMD, with
specular orientation with respect to the first one, acts as a spatial
mask in the Fourier plane, opportunely selecting the spatial fre-
quency components of the input image. The frequency filtered
image is inverse Fourier transformed into the real space by the
second Fourier lens and imaged by a high-speed camera [Fig. 1(b)].
Both FT transformation steps are performed entirely passively,
i.e., zero-static power consumption, which is in stark contrast
to performing convolutions as dot product multiplications in
electronics [5].

On the system level, a computer loads the input image as well
as the kernel (1920 × 1080, 8 bit, 1000 Hz) stored in its memory
to the DMDs by means of a HDMI cable or directly generated
through a field programmable gate array (FPGA) (Virtex 7),
which connects to the digital light processing (DLP) boards (Texas
Instrument) of the two DMDs through a serial connection, aiming
to reduce the latency in providing the signals and allowing for
processing while streaming data. Consequently, the AO Fourier
filtered images are detected with a charge-coupled device (CCD)
camera (1000 frames/s with 8 bit resolution) connected through

PCI-express to a unified system interface which can store the data
or process it implementing other NN tasks, such as max pooling,
activation function, and fully connected (FC) layer. For emulating
deeper neural networks which comprise multiple layers, the result-
ing image could be potentially loaded in the first DMD (see more
details in Section 1 of Supplement 1.

Considering the abovementioned specifications, the system
leverages (1) the vast parallelism given by the high pixel resolution
of the camera and DMDs (2 megapixels); (2) inherent and com-
pletely passive operations due to the wave nature of the optical
radiation, which allows for passive Fourier transforming exploit-
ing lenses (Fresnel’s integral) and pixelwise multiplication in the
Fourier plane (Huygens’ principle); (3) order of magnitude faster
update rates compared to SLMs based on liquid crystals; thus (4)
enabling a nominal throughput equivalent to 4 peta operations per
second performed by space domain convolution operations (slid-
ing window), with a resolution given by the DMDs (1920 × 1080
at 8 bit), updating at a frequency of ∼1 kHz and with a CCD
camera acquisition frame rate of 1 kHz. It is worth stressing that,
unlike other implementations [13,16] in which the kernels are
fixed phase masks (diffractive elements or optical transparencies)
and cannot be adjusted after training without physically replacing
it, in our convolutional layer both feature maps and kernels can be
updated at the same high rate (10 kHz). This can be particularly
advantageous for emulating on the same hardware, deeper CNN
architecture, which comprises multiple convolutional layers, in
which batch normalization and max pooling are performed in
the electrical domain. Notice that our convolutional layer already
provides a straightforward nonlinearity (threshold) without the
need of all optical nonlinearities as proposed by other schemes
[23], which provides similar effects of a rectified linear unit (ReLU)
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[24]. In detail, after the linear operation computed in the spatial
frequency filtering (convolution) executed by the 4 f system, at the
image plane, the electric field intensity associated to light is squared
(x 2 function) when detected by the camera. Moreover, we demon-
strate that, for our network architecture and dataset, additional
nonlinearities do not provide any particular benefit (Supplement
1, Section 10). An all-optical nonlinearity in combination with this
Fourier-optical CNN approach will be reported elsewhere.

The proposed AO-FF could be particularly useful in systems in
which the input images are already encoded in a coherent radiation
(first · DMD is absent). More in detail, if the inputs are already in
the optical domain, the system which is opportunely trained using
the proposed algorithm, can behave as a passive filter and therefore
operate in real time, with execution time limited only by the inte-
gration time of the camera. The AO-FF can detect images within
images (such as in steganography and optical illusions as shown
in Section 2 of Supplement 1), demonstrating an immediate use
in augmented visual perception or in classification of complex
pattern, such as in iris recognition 8 bit scans or pattern recognition
in LIDAR application.

Interestingly, spatial frequency filtering performed by a DMD is
insensitive to the phase information. It is well established that full-
field control could be achieved but here it is not desired. In 1963, in
fact, Van der Lugt proposed a way to achieve plane frequency mask
which retains effective phase and amplitude control in spite of
using just absorption patterns [7], by exploiting Fourier holograms
of the input image. Other full-field spatial control can be achieved
through several interferometric schemes [25], such as Rayleigh or
Mach–Zehnder interferometer, Lee holograms [26], superpixel
[27], and more recent high-precision methods [28] and NN-based
holographic reconstruction [29]. The full control over the optical
field, while being advantageous in terms of image processing,
comes at a cost of (1) increased complexity of the system, requiring
additional optics and cumbersome alignments; and (2) reduction
of the total dimension of the phase mask or need for corrective
measurements and consequent drop of the overall parallelism. For
these reasons, unlike other demonstrations [30], we deliberately
decide to train the CNN to account for the information loss related
to phase, and for the imprecise reconstruction of the images, while
performing convolutions.

The designed CNN architecture consists of a single convolu-
tion layer in which sets of kernels are convolved with the input
images. The convolutional layers are usually intercalated by pool-
ing layer, which reduces the matrix dimensionality followed by
nonlinear thresholding. Typical multilayer CNNs comprise lay-
ers of convolutional nodes followed by layers of fully connected
nodes. Here, we use our experimental optical AO Fourier con-
volutional layer, whose output is pooled together, followed by a
fully connected layer and nonlinear thresholding, both performed
electronically. The convolutional layer has 16 nodes and each
convolutional node uses a 208 × 208 kernel. The kernel param-
eters comprise the weights that are learned during the training
procedure [Fig. 1(c)]. The CNN is trained using PyTorch, which is
agnostic to the optics hardware. Therefore, it uses a set of functions,
which exhaustively describe the Fourier convolution layer in order
to accurately simulate the physical system. We adopt the concept of
fast Fourier transform (FFT)-based Fourier domain training [31],
together with the refined hardware model to accurately simulate
the complete process and learn the kernel weights during train-
ing. The kernel values, which are the learnable parameters of the

convolutional layer, are initialized directly in the Fourier domain.
By doing so, the kernels do not need to be transformed into the
Fourier domain such as required in [32,33], which matches our
physical model well. For fully utilizing the maximum update speed
of the DMD we restrict the kernel values to be real and binary;
therefore, in the training a custom binarization step is needed. The
CNN is trained using two classic datasets for image recognition
to demonstrate the learning capability of this system as well as
benchmarking it, namely the MNIST dataset of handwritten digits
and CIFAR-10, a more challenging image classification problem.
The trained kernel is used as an input pattern in the free-space 4 f
system and the results of the convolutions are used for validating
the physical model and for eventual successive training of the FC
NN [Fig. 1(d)].

For obtaining a correct training and consequently highly accu-
rate inference when performing convolution using the optical
hardware, the physical model embedded into the training phase
needs to accurately describe the coherent optical engine including
its analog computing approximations and inaccuracies (for more
details, see Section 3 of Supplement 1).

In order to validate the model and compare the results with
the experimental realization of the optical engine, at first, we fil-
ter, by way of example, the 8 bit image of the GWU mascot (the
Colonial), using different spatial frequency filters (Supplement 1).
The results of the convolution obtained through the model and the
experimental realization highlight a qualitative and quantitative
agreement obtaining high (>0.7 for all the kernel except low-pass
filter) structural similarity (SSIM), which is related to the image
degradation as perceived change in structural information, and
extremely low absolute errors, showcased by <0.1 root mean
square error (more details in Section 4 of Supplement 1).

Leveraging on the massive amount of parallelism available
in optical hardware (2 megapixels), the AO Fourier-based con-
volutional layer can be further parallelized if the input images
(208 × 208 pixel) are smaller compared to the resolution offered
by the DMD and the camera. In our experiment, we tiled in the
input plane and batch process up to 46 images using the same
kernel in the Fourier plane. Alternatively, the same input can be
simultaneously filtered by multiple kernels; in this case, the Fourier
transformed image is directed to different (nonoverlapping) por-
tions of the DMD (or different DMDs) in the Fourier plane using
opportune beam splitters, array of mirrors, and well-dimensioned
microlens arrays. Ultimately each product is inverse Fourier trans-
formed (using a second lenslet array) and imaged by different
sensors. The filtered images can be integrated by the same sensor,
performing dimensionality reduction. For additional information
regarding the experimental implementation of the parallelization
schemes, see Section 5 of Supplement 1.

After the model validation and establishment of paralleliza-
tion schemes, to demonstrate the performance of the all-optical
Fourier neural network (AO-FNN), we first trained the proces-
sor as an image classifier, performing automated classification of
handwritten digits (MNIST). For this task, we train a one-layer
convolutional layer, followed by a FC layer, with 55,000 images
(5000 validation images) from the MNIST handwritten digit
database. The input digits are encoded as amplitude and the net-
work is trained to obtain the kernels (16,208 × 208 binary images)
to multiply in the Fourier plane, to be fed to the second DMD
[Fig. 2(a)]. More details on the training are provided in Section 6 of
Supplement 1.
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Fig. 2. Experimental testing of MNIST classifier. (a) Kernel obtained during training of the Fourier neural network for the classification of handwritten
digits (MNIST dataset). (b) Output result of the emulated and experimental implementation of the first layer for different kernels (x axis) and input images
(y axis). (c) Structural similarity map which compares the output obtained experimentally and those obtained during emulation for different digits (y axis)
and kernels (x axis). We used the experimental output for training only the fully connected layer in order to compensate the discrepancies and improve the
accuracy of the inference (see Visualization 1).

After the training, the network was blind tested, adopting
the obtained kernel, using unseen images from the MNIST test
dataset (not used as part of the training/validation), achieving 98%
classification accuracy (Table 1). At this stage, for validating the
hardware implementation, we perform convolutions between
the kernels and unseen feature maps using the optical engine. The
results of the emulated and experimental convolution layers are
compared in terms of transformed feature maps and classification
accuracy. Since our simulation model already considers some
nonidealities of the optical hardware, the convolution results of
the hardware implementation match the simulation results quite
well qualitatively; their shapes are almost identical [Fig. 2(b)].
Although the match is not perfect quantitatively, highlighted by
a lower SSIM [Fig. 2(c)]. This is due to several concurring factors
including (a) small misalignment in the optical setup, (b) model
which takes into account unphysical reflection of grid boundaries,
and (c) nonideal camera dynamic range. The exact pixel values
of hardware results differ from the simulation results; thus, if the
convolution results obtained using the optical hardware are fed
into a fully connected layer, whose weights are trained using simu-
lation results, the actual classification accuracy will be significantly
affected (92%). However, the Fourier kernel weights still bear
the same representative information as the simulation model,
and that the fully connected layer weights need to be updated to
fit the hardware convolution results, thus compensating for the
quantitative discrepancies between the model used for training and
hardware implementation. Therefore, we implemented an ulterior
fine-tuning process, which uses the hardware convolution results
to retrain the fully connected weights of the layer with a reduced
number of training samples. In detail, we perform the fine-tuning
which utilizes the existing knowledge learned by the simulation
model from the full training set and learns a mapping from the
experimental results toward simulation results and compensates
for it (Section 8). This approach proves to be particularly useful and
the tuned hardware results accuracy shows a significant improve-
ment (98%) compared with the one without fine-tuning (92%).
Moreover, this fine-tuning approach which compensates from
hardware-to-model discrepancies can be used if the optical engine

is processing data in harsh environment conditions, for applica-
tions such as superresolution on object detection performance in
satellite imagery, which can cause random misalignments.

For a more complex dataset, such as CIFAR-10, which com-
prises color images of 10 classes, with 6000 images per class, the
inference accuracy for the simulated model is 62%, which is also
close to the regularly used space-domain convolution model with
full bit-precision, for similar neural network architecture (one
conv. layer) implemented in different technology, such as one-layer
electronic CNN or phase-only 4 f schemes (accuracy of 51%).
This is a promising result, since we show that in simulation our
network with binarized kernel weights is able to obtain a (near)
similar level of accuracy as normal space domain convolution
using full precision features (32 bit). This can be explained by the
effectiveness of the training of the 4 f system, as well as the fact that
there are more learnable parameters in the Fourier convolution,
due to the larger kernel size compared with the space convolution
version (more details in Section 11 of Supplement 1).

The ulterior degrees of freedom provided by the optical engine
are considered to be “free” since the convolution time in the opti-
cal system does not depend on the size of the kernel as long as the
size is within the DMD’s resolution. After fine-tuning using a con-
tained number (5000) of hardware results, the classification accu-
racy is a 54%, which is respectable given that it represents close to
90% from the nominal achievable results (Table 1).

To provide some details regarding the efficiency and perform-
ance of this novel computing scheme based on 2 megapixel DMDs,
the AO-FF can perform convolutions between large matrices, in
transform calculations, 10 times faster than a Nvidia P100 graphics
card, commonly employed for high-performance computation,
and more than 2 orders of magnitude faster than architectures
which exploit SLMs, while consuming similar power. In terms of
efficiency [Fig. 3(a)], the largest portion of the energy consumption
and processing time of our optical engine comes from the signal
transduction step, from digital electronics to optical domain and
vice versa. In our optical system, the processing time for perform-
ing an 8 bit convolution is given by the sum of all delays, including
the generation of the patterns (DMDs), time-of-flight of the
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Table 1. Result of Normal Space Domain
Convolution, Our Fourier Convolution Simulation
Model, Hardware Model with and without Fine-Tuning

a

Model MNIST (%) CIFAR (%)

Space-domain
convolution
(full precision)

98 63

Simulation model
(Fourier convolution)

98 62

Hardware model
(without fine-tuning)

92 25

Hardware model
(with fine-tuning)

98 54

aFor more details on simulation results, see Section 9 of Supplement 1.

photons through the optical setup, detection by the CCD camera
(camera), and ultimately being transmitted for subsequent soft-
ware processing. For a 2 megapixel 8 bit input and kernel images,
the largest contribution latency is given by the camera acquisition
time, followed by the DMD switching speed. The propagation
time is negligible since, considering the 4 f distances into play
and the optical tools, it amounts for few nanoseconds. Whereas,
the acquisition time of the high-speed camera is a function of the
resolution of the image to be detected and represents the bottle-
neck of this current implementation. A higher-speed camera can
ameliorate the processing time by a factor of 2, keeping the same
DMD speed and resolution.

Looking at the future potential of this 4 f -based hybrid accel-
erator paradigm, developments of faster and higher-resolution
spatial modulators and high-speed detection mechanisms are cru-
cial to the advancement toward the implementation of intelligent
functionalities [Fig. 3(b)]. For instance, higher-resolution DMDs
(4 K resolution) and cameras would lead to an even increased
parallelism (16 times the current throughput) compared to our
prototype. Interestingly, at the research level, the analog version of

MOEMS can reach high modulation speed (∼ 10 MHz) without
trading off pixel resolution (∼ 10 megapixels) [38]. Using the
analog MOEMS, for spatially modulating the optical signal, in
combination with the ultra-high-speed camera (MHz, > 4K res-
olution), for converting the filtered signal in the electric domain,
could improve the throughput of the system by about 4 orders
of magnitude. However, for this configuration, the electronic
interface will be the bottleneck of the system, which has to be
able to deliver the patterns and acquire data with an overall band-
width of tens of ∼ 100 tera operations per second. Nonetheless,
our AO 4 f optical processor demonstration paves the way to
future realizations; for instance, exploiting emerging technology
components such as micrometer-thin metalenses, gigahertz fast
reprogrammable metasurfaces, and high-speed photodiode arrays
would yield to highly competitive footprint, while augmenting
the computation throughput up to exa-operations per seconds,
without trading off in terms of power consumption. However, at
the current stage, these components are still challenged in terms
of matrix resolution and achievable phase contrast [17,18]. These
devices necessitate materials and device configurations which can
provide efficient light–matter interactions, CMOS compatibility,
straightforward and stark tunability, and sufficient maturity to be
scaled up.

3. CONCLUSIONS

In summary, we have demonstrated an amplitude-only electro-
optic Fourier filter engine with high-speed programmability and
throughput. The dynamic Fourier filtering is realized using digital
micromirror devices, both in the object and Fourier plane of an
optical 4 f system. As a proof-of-principle demonstration, we con-
structed a neural network which uses, as convolutional layer, the
electro-optical convolutional engine for classifying handwritten
digits (MNIST) and color images (CIFAR-10). We trained the
network off-chip, using a detailed physical model which describes

Fig. 3. Performance of the amplitude-only optical Fourier engine and its performance potential. (a) Comparison of total processing time for performing
a convolution as a function of the image (matrix) resolution (expressed in megapixels) comparing the amplitude-only Fourier filter (red solid line) to the
P100 Nvidia GPU (blue-dashed line fitting, experimental data dots) and a 4 f system based on spatial light modulators (gray line). Here, we consider
the convolution between two images (input and kernel) sharing the same pixel resolution expressed in megapixels. The 2 megapixel mark set the current
maximum resolution of the DMD of this experimental realization but does not represent a technological limit. Pie chart illustrates the breakdown of the
latency for the DMD-based 4 f system when performing convolution. The overall latency consists of the DMD operation time (switching speed of the
mirrors—green slice), camera integration time (yellow slice), and time of flight of the photon in the optical setup (violet slice). (b) Programmable electro-
optic spatial light modulator grouped according to the functioning principle define processor performance defined by matrix size-speed-product (gray
iso-performance lines). Exemplary, the 100× improvement over an SLM-based system (e.g., Optalysys) is a direct function of matrix size and update rate:
carrier doping (Graphene [34,35], TCO [36]), phase change (PCM [37], Organic Polymer [18], LCOS-SLM Gaea-2), MOEMS (Texas Instruments:
2MPx-DLP9000 and 4 K-DLP660TE, Analog MOEMS [38]), and electro-mechanical [39], which can contemporary increase the throughput and lower
latency of the proposed 4 f system. The plot is tripartite into emerging technologies, COTS devices, and potential hardware with GHz-fast, million-pixel
electro-optic devices which can spatially modulate light for the next-generation information science and sensing.

https://doi.org/10.6084/m9.figshare.13256639
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the electro-optical system and its nonidealities, such as optical
aberrations and misalignments. After experimentally validating
the model and retraining the following fully connected layer to
compensate for value discrepancies, we obtained a classification
accuracy of 98% and 54% for MNIST and CIFAR-10, respec-
tively, with a throughput up to 1000 convolutions per seconds
between two 2 megapixel images, which is 1 order of magnitude
faster than the state-of-the-art GPU. Additionally, our scientific
contribution emphasizes that the information loss and inaccura-
cies deriving from neglecting the phase of the optical wavefront
can be compensated for by the degree of robustness provided by
neural network training, which yields intelligent classification, at
as high accuracy as the one obtained by phase-only optical engine,
while featuring 2 orders of magnitude faster programmability.
The system can also be used to filter images of smaller resolution in
parallel, and by exploiting ad hoc electronic I/O interface, emulate
deeper neural networks reaching high number of connections and
millions of neurons. This paradigm and hardware implementation
of the optical engines for artificial neural networks is a promising
alternative to other machine learning architecture since they can
avail parallel computing capability and power efficiency inherent
to optical systems. Our results, reported for different inference
tasks, indicate the potential that our intelligent information
processing scheme could open new perspectives of flexible and
compact platforms which could be transformative for diverse
applications, ranging from image analysis to image classification
and superresolution imaging on unmanned aerial vehicles, and
may also enable high-bandwidth free-space communication in
data centers, intelligently pre-processing data locally at the edge of
the network.

Funding. Army Research Office (W911NF1910468); Office
of Naval Research (N00014-19-1-2595).

Acknowledgment. We thank Prof. Aydin Babakhani, Prof.
Seth Bank, Prof. Tarek El-Ghazawi, Prof. David Pan, and Prof.
Chee Wei Wong of the “Photonic Convolutional Processor for
Network Edge Computing” project for the insightful discussions.
V. J. S. is supported by the Advanced Computing Program (ACI)
under the Army Research Office.

V. J. S. and M. M. envisioned the idea of an amplitude-only
Fourier convolutional engine for deep learning, V. J. S. and P. G.
acquired the funds and supervised the project. M. M. developed
the relevant theories and analyses for the project. M. M. and Z.
H. designed the experimental setup and conducted the free-space
experiments. R. C. and H. D. supported the system’s high-speed
data input-output. S. L. designed and trained the amplitude-only
Fourier neural network and performed the relevant tests and
benchmarking. M. M., P. G., S. L. P. H., J. G., and V. J. S. discussed
the results and contributed to the understanding, analysis, and
interpretation of the results. All authors contributed to writing the
manuscript.

Disclosures. M. M. and V. J. S. (P); H. D. Optelligence LLC
(E, I); V. J. S. Optelligence LLC (I).

See Supplement 1 for supporting content.

REFERENCES
1. Y. M. Assael, B. Shillingford, S. Whiteson, and N. de Freitas, “LipNet:

end-to-end sentence-level lipreading,” arXiv:1611.01599v2 (2017),
p. 13.

2. T. Simonite, “Google’s AI wizard unveils a new twist on neuralnetworks,”
in WIRED, 1 November 2017.

3. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature 518, 529–533 (2015).

4. X. Li, G. Zhang, H. H. Huang, Z. Wang, and W. Zheng, “Performance
analysis of GPU-based convolutional neural networks,” in 45th
International Conference on Parallel Processing (ICPP) (IEEE, 2016),
pp. 67–76.

5. D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy efficiency
of deep convolutional neural networks on CPUs and GPUs,” in IEEE
International Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom) (BDCloud-SocialCom-SustainCom)
(IEEE, 2016), pp. 477–484.

6. H. M. Ozaktas and H. Urey, “Space-bandwidth product of conventional
Fourier transforming systems,” Opt. Commun. 104, 29–31 (1993).

7. A. V. Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf.
Theory 10, 139–145 (1964).

8. “Optical neural computers,” https://www.scientificamerican.com/article/
optical-neural-computers/.

9. A. V. Lugt, “Coherent optical processing,” Proc. IEEE 62, 1300–1319
(1974).

10. C. S. Weaver and J. W. Goodman, “A technique for optically convolving
two functions,” Appl. Opt. 5, 1248–1249 (1966).

11. Y. Chen, “4f-type optical system for matrix multiplication,” Opt. Eng. 32,
77–79 (1993).

12. D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural
networks,” Nature 343, 325–330 (1990).

13. X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A.
Ozcan, “All-optical machine learning using diffractive deep neural
networks,” Science 361, 1004–1008 (2018).

14. “Optalysys completes 320 gigaFLOP optical computer prototype,
targets 9 petaFLOP product in 2017 and 17 exaFLOPS machine by
2020—NextBigFuture.com,” https://www.nextbigfuture.com/2015/05/
optalysys-completes-320-gigaflop.html.

15. T. Lu, S. Wu, X. Xu, and F. T. S. Yu, “Two-dimensional programmable
optical neural network,” Appl. Opt. 28, 4908–4913 (1989).

16. J. Chang, V. Sitzmann, X. Dun, W. Heidrich, and G. Wetzstein, “Hybrid
optical-electronic convolutional neural networks with optimized
diffractive optics for image classification,” Sci. Rep. 8, 1–10 (2018).

17. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts,
“Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).

18. A. Smolyaninov, A. El Amili, F. Vallini, S. Pappert, and Y. Fainman,
“Programmable plasmonic phase modulation of free-space wavefronts
at gigahertz rates,” Nat. Photonics 13, 431–435 (2019).

19. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt.
23, 812–816 (1984).

20. J. M. Kahn and D. A. B. Miller, “Communications expands its space,”
Nat. Photonics 11, 5–8 (2017).

21. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and
Company, 2005).

22. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,”
Proc. IEEE 69, 529–541 (1981).

23. Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and
S. Du, “All-optical neural network with nonlinear activation functions,”
Optica 6, 1132–1137 (2019).

24. S. Chen, X. Wang, C. Chen, Y. Lu, X. Zhang, and L. Wen, “DeepSquare:
boosting the learning power of deep convolutional neural networks with
elementwise square operators,” arXiv:1906.04979 [cs] (2019).

25. M. Mirhosseini, O. S. Magaña-Loaiza, C. Chen, B. Rodenburg, M. Malik,
and R. W. Boyd, “Rapid generation of light beams carrying orbital angu-
lar momentum,” Opt. Express 21, 30196–30203 (2013).

26. W.-H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682
(1974).

https://doi.org/10.6084/m9.figshare.13256639
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/0030-4018(93)90099-Q
https://doi.org/10.1109/TIT.1964.1053650
https://doi.org/10.1109/TIT.1964.1053650
https://www.scientificamerican.com/article/optical-neural-computers/
https://www.scientificamerican.com/article/optical-neural-computers/
https://doi.org/10.1109/PROC.1974.9624
https://doi.org/10.1364/AO.5.001248
https://doi.org/10.1117/12.60078
https://doi.org/10.1038/343325a0
https://doi.org/10.1126/science.aat8084
https://www.nextbigfuture.com/2015/05/optalysys-completes-320-gigaflop.html
https://www.nextbigfuture.com/2015/05/optalysys-completes-320-gigaflop.html
https://doi.org/10.1364/AO.28.004908
https://doi.org/10.1038/s41598-017-17765-5
https://doi.org/10.1038/nature11727
https://doi.org/10.1038/s41566-019-0360-3
https://doi.org/10.1364/AO.23.000812
https://doi.org/10.1038/nphoton.2016.256
https://doi.org/10.1109/PROC.1981.12022
https://doi.org/10.1364/OPTICA.6.001132
https://doi.org/10.1364/OE.21.030196
https://doi.org/10.1364/AO.13.001677


Research Article Vol. 7, No. 12 / December 2020 / Optica 1819

27. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial
amplitude and phase modulation using a digital micromirror device,”
Opt. Express 22, 17999–18009 (2014).

28. L. Liu, Y. Gao, and X. Liu, “High-precision joint amplitude and phase
control of spatial light using a digital micromirror device,” Opt. Commun.
424, 70–79 (2018).

29. Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase
recovery and holographic image reconstruction using deep learning in
neural networks,” Light Sci. Appl. 7, 17141 (2018).

30. E. G. Paek, J. R. Wullert, A. Von Lehmen, J. S. Patel, A. Scherer, J.
Harbison, H. J. Yu, and R. Martin, “VanderLugt correlator and neural
networks,” in Conference Proceedings., IEEE International Conference
on Systems, Man and Cybernetics (1989), Vol. 2, pp. 408–414.

31. H. Pratt, B. Williams, F. Coenen, and Y. Zheng, “FCNN: Fourier convolu-
tional neural networks,” in Machine Learning and Knowledge Discovery
in Databases, Lecture Notes in Computer Science, M. Ceci, J. Hollmén,
L. Todorovski, C. Vens, and S. Džeroski, eds. (Springer International
Publishing, 2017), pp. 786–798.

32. T. Abtahi, A. Kulkarni, and T. Mohsenin, “Accelerating convolutional neu-
ral network with FFT on tiny cores,” in IEEE International Symposium on
Circuits and Systems (ISCAS) (2017), pp. 1–4.

33. M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional net-
works through FFTs,” arXiv:1312.5851 [cs] (2014).

34. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F.
Capasso, “Electrically tunable metasurface perfect absorbers for
ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532
(2014).

35. B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor,
D. R. Smith, and H.-T. Chen, “Hybrid graphene metasurfaces for high-
speed mid-infrared light modulation and single-pixel imaging,” Light Sci.
Appl. 7, 51 (2018).

36. R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R. T. Chen,
H. Dalir, and V. J. Sorger, “Sub-wavelength GHz-fast broadband ITO
Mach–Zehnder modulator on silicon photonics,” Optica 7, 333–335
(2020).

37. H.-S. Ee and R. Agarwal, “Electrically programmable multi-purpose non-
volatile metasurface based on phase change materials,” Phys. Scr. 94,
025803 (2019).

38. J.-U. Schmidt, U. A. Dauderstaedt, P. Duerr, M. Friedrichs, T. Hughes, T.
Ludewig, D. Rudloff, T. Schwaten, D. Trenkler, M. Wagner, I. Wullinger,
A. Bergstrom, P. Bjoernangen, F. Jonsson, T. Karlin, P. Ronnholm, and
T. Sandstrom, “High-speed one-dimensional spatial light modulator for
laser direct imaging and other patterning applications,” Proc. SPIE 8977,
89770O (2014).

39. N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic
metamaterials,” Nat. Nanotechnol. 11, 16–22 (2016).

https://doi.org/10.1364/OE.22.017999
https://doi.org/10.1016/j.optcom.2018.04.016
https://doi.org/10.1038/lsa.2017.141
https://doi.org/10.1021/nl503104n
https://doi.org/10.1038/s41377-018-0055-4
https://doi.org/10.1038/s41377-018-0055-4
https://doi.org/10.1364/OPTICA.389437
https://doi.org/10.1088/1402-4896/aaf27c
https://doi.org/10.1117/12.2036533
https://doi.org/10.1038/nnano.2015.302

