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Abstract— Bayesian Optimization (BO) is an increasingly 

popular method for automating costly design optimization tasks in 

many fields of science and engineering. In this paper, we evaluate 

the application of such surrogate model-based optimization 

methods in the field of electronic high-speed design. For this 

purpose, we present a design of a bias-tee circuit required for 

power transmission over a communication link in an automotive 

environment. Based on a low-fidelity version of the costly-to-

evaluate design task, we analyze the sampling efficiency of BO. 

Besides this, we discuss the handling of categorical variables in 

BO, which are frequently encountered in engineering tasks. Our 

experiments show that with suitable variable handling, BO 

outperforms other state-of-the-art optimization methods 

significantly. Lastly, we discuss additional benefits of applying 

surrogate model-based optimization methods, such as direct access 

to feature importance metrics, possibilities to use novel surrogate 

models, and the option to apply transfer learning to optimization. 

Keywords — Bayesian optimization, high-speed design, 

electronic design automation, optimization benchmarks, feature 

importance, surrogate modeling, Bayesian neural networks, 

transfer learning. 

I. INTRODUCTION

Bayesian Optimization (BO) is a state-of-the-art surrogate 
model-based optimization (SMBO) method often applied to 
very time-consuming and costly optimization problems. The 
most popular application of BO is neural architecture search 
(NAS) [1], but it is also increasingly applied in other domains, 
such as material science, chemistry [2, 3], or electronic design 
automation (EDA) [4, 5, 6].  

Electronic design tasks often involve long simulation 
runtimes, especially when costly 3D simulations are required. 
In printed circuit board (PCB) design for example, such 
expensive simulations are used for signal integrity (SI), power 
integrity (PI), or electromagnetic compatibility (EMC) design. 
In this context, we evaluate the application of BO for 
optimization tasks in the field of electronic high-speed design, 
for which we present a design of a wideband bias-tee circuit 
for automotive applications. In this particular design, there are 
several options for circuit elements that must be selected, 
while suitable PCB layout parameters must be defined in 
parallel. To analyze the parasitic layout effects on the high-
speed characteristics, the design evaluation involves a 
computationally intensive 3D simulation. Thus, the design 
should be optimized with as few simulative evaluations as 
possible, which demands a high sampling efficiency of an 
applied optimization method. 

Bayesian Optimization is associated with such a high 
sampling efficiency [7, 8]. However, applying BO in an 
engineering context often presents a unique set of challenges. 
On the one hand, the given design task must be formulated as 
an optimization problem. Such a problem setup typically 
poses several obstacles such as defining a suitable 

optimization target, dealing with multiple variable types, or 
automating design variations. On the other hand, the 
optimization method itself raises application-oriented 
challenges. Since BO is typically applied to expensive 
optimization tasks, the validation of its sampling efficiency is 
difficult, as a large number of optimization runs is needed for 
statistically relevant conclusions. Also, choices in the 
optimization experiment setup can affect this sampling 
efficiency, such as different approaches for handling 
categorical variables. Due to the large number of optimization 
runs required to analyze these effects, they are often neglected, 
which can lead to incorrect assumptions about the 
effectiveness of an applied BO method. 

In the first part of this paper, we address these application-
oriented problems. First, we introduce the highspeed design 
task and formulate it as an optimization problem. We provide 
detailed insights into the definition of an optimization 
objective, the handling of categorical variables, and the 
required automation steps. Next, we conduct benchmark 
experiments to evaluate the sampling efficiency of BO in 
comparison to other state-of-the-art optimization methods. 
We also examine how choices in the experiment setup, such 
as categorical variable encodings, impact this optimization 
performance. By using a low-fidelity version of the costly-to-
evaluate high-speed design task, we present an approach on 
how to evaluate the sampling efficiency in the context of 
computationally intensive optimization problems. 
Subsequently, we use insights gained from these benchmark 
experiments to select the most suitable settings for the high-
fidelity design optimization. 

In the second part of this paper, we present three additional 
experiments to demonstrate further advantages of SMBO 
methods beyond their sampling efficiency. We provide an 
example of how feature importance metric can be analyzed 
directly via the surrogate model. Additionally, we present an 
application of an advanced surrogate model, which can be 
used to give more informative predictions in an optimization 
experiment. Furthermore, we show how transfer learning in 
BO can further improve its sampling efficiency. The 
respective results serve as an outlook on future opportunities 
in this field. 

To summarize, our main contributions: 

- The sampling efficiency of BO is compared to other
state of the art black-box optimization methods in
benchmark experiments. An approach is presented on
how to evaluate the sampling efficiency of
optimization algorithms for computationally
expensive design tasks via highly comparable low-
fidelity versions.

- Using an exemplary highspeed PCB design, it is
shown how a simultaneous choice of circuit and
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layout design parameters can be formulated as an 
optimization problem. In addition, necessary 
automation steps for applying BO to the design are 
presented.  

- Additional benefits of SMBO methods are
highlighted from an application-oriented perspective,
which provides an outlook on future opportunities in
this domain.

Section II introduces theoretical background of the BO 
method and discusses current applications in science and 
engineering. In section III, we present a detailed setup of the 
high-speed design task, the optimization objective, and 
necessary steps for the design automation. Lastly, section IV 
presents the results of the optimization experiments, while 
section V highlights additional benefits of applying SMBO 
methods. 

II. BAYESIAN OPTIMIZATION METHOD

Bayesian Optimization [9, 10] is an iterative black-box 
optimization (BBO) method that consists of three main steps: 
Black-box function evaluation (data collection), surrogate 
model training, and acquisition function maximization (see 
Figure 1). These steps are executed iteratively until either a 
maximum number of evaluations (budget) is reached, or a 
required optimization target is achieved. 

The highspeed design task introduced in section III 
corresponds to the black-box function 𝑦(𝒙).  Next, we will 
introduce surrogate models and acquisition functions, which 
are commonly applied in BO. 

A. Probabilistic surrogate model

A probabilistic surrogate model 𝑦∗(𝒙∗) is used to predict a
mean �̅�∗(𝒙∗) and an uncertainty, represented by a standard
deviation 𝜎(𝒙∗), of a black-box function. 𝒙∗  is an unknown
sample position, while 𝑋 = (𝒙𝑖  | 𝑖 = 0, … , 𝑛) and 𝒚 = 𝑦(𝑋)
describe already evaluated samples.  

The most common surrogate models applied in BO are 
Gaussian Processes (GP). However, it is also possible to use 
other probabilistic machine learning models such as Bayesian 
Neural Networks (BNN), of which we will present a suitable 
application in section V.B. 

1) Gaussian Processes
Using a noise-free Gaussian Process regression model [11]

requires first the selection of a prior mean 𝑚prior(𝒙) and a

prior kernel function 𝑘prior(𝒙)  (also known as covariance

function). 𝑚prior(𝒙) typically models an offset in the data.

For simplicity, however, we assume that the given data has a 
zero-mean (𝑚prior(𝒙) =  0) , which can be implied for

standardized data. 𝑘prior(𝒙)  describes correlation between

samples. Most common kernel functions are the radial basis 
function (RBF) and Matern kernels, which model spatially-
exponentially decreasing correlations. Moreover, it is possible 
to use other kernel types, such as periodic kernels, or to 
combine multiple kernels mathematically.  

After choosing priors, the hyperparameters of the kernel 
function are fitted via the Log-Marginal-Likelihood-
Maximization method using observed (training) data (𝑋, 𝒚). 
Subsequently, the posterior (trained) GP can be derived and is 
defined as [11]: 

𝒚∗|𝑋∗, 𝑋, 𝒚   ~   𝒩(�̅�∗, 𝐾𝒚∗)) ( 1 ) 

with: 

�̅�∗  =  𝐾(𝑋, 𝑋∗)
𝑇 ∙  𝐾(𝑋, 𝑋)−1  ∙ 𝒚 ( 2 ) 

𝐾𝒚∗ =  𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋, 𝑋∗)
𝑇

∙ 𝐾(𝑋, 𝑋)−1  ∙ 𝐾(𝑋, 𝑋∗)
( 3 ) 

Where 𝐾 describes covariance matrices sampled from the 
kernel function at known locations 𝑋  and unknown 
locations 𝑋∗. �̅�∗ is the prediction for the mean of the black-
box function, while 𝐾𝒚∗ is the resulting covariance matrix of 

𝒚∗. The standard deviation 𝝈 can be calculated by taking the 
square-root of the diagonal of 𝐾𝒚∗:

𝝈(𝑋∗) =  √diag(𝐾𝒚∗)
( 4 ) 

The most computational-intensive part of the GP training 
is the calculation of the inverse covariance matrix 𝐾(𝑋, 𝑋)−1.
Thereby, the runtime of standard BO methods typically scales 
with 𝒪(𝑛3)  to the number of evaluations 𝑛.

2) Bayesian Neural Networks
Recent studies suggest the use of Bayesian Neural Nets as

surrogate models for BO [12, 13]. Benefits of these 
approaches are a linear scaling runtime, which is especially 
important when observing a large quantity of samples 𝑛. In 
addition, the data formats at the inputs and outputs have a 
larger flexibility, which enables including auxiliary 
information for optimization.  

A downside of using these models in BO is a higher 
computational effort from the start on (for a small number of 
samples 𝑛). Also, BNNs are parametric models, which add 
additional hyperparameters for the model complexity to 
choose before the optimization. GPs in contrast are inherently 
non-parametric models, which intrinsically add complexity 
with increasing amount of training data [14].  

B. Acquisition functions

After training a surrogate model, an acquisition function 𝛼
is applied. This function uses the surrogate model predictions 
to search for informative new sample positions where the 
black-box function should be evaluated in the next iteration. 
In this process, the tradeoff between exploration (evaluating 
𝑦(𝒙∗)  at 𝒙∗where 𝜎(𝒙∗) can be reduced) and exploitation
(evaluating 𝑦(𝒙∗)  at 𝒙∗where �̅�∗  improves over the current
best value found) is handled. 

Common acquisition functions are probability of 
improvement (PI), expected improvement (EI), and upper 
confidence bound (UCB) [15]. In practice, EI is often a default 
choice in many BO frameworks and is formulated as:  

Figure 1: Schematic representation of the Bayesian Optimization 

method. 
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𝐸𝐼(𝒙) = 𝔼(max(�̅�∗ − 𝑦best , 0)) ( 5 ) 

Where 𝔼  is the expected value and 𝑦best  is the best
observation so far. A more detailed definition is given in [16]. 
The next sample 𝒙next is found by maximizing 𝛼:

𝒙next = argmax(𝛼(𝒙)) ( 6 ) 

This method typically results in a new sample position, 
which significantly increases the informational content of the 
acquired dataset. 

C. Application of BO in engineering and science

BO methods are widely applied in various domains of
science. For example, in chemistry or material design [17, 18, 
12], BO is used discover new materials or molecules. These 
optimization problems often show a very comparable 
structure to engineering problems with long simulation 
runtimes and mixed variable spaces [19]. In electronic 
engineering, BO is increasingly applied e.g. in chip design 
[20, 21] to tune parameters of chip architectures or RF-
circuits. Further applications include analog circuit designs 
[22, 23, 24], SI [25], or EMC [26] design tasks.  

However, application-oriented studies often lack a 
convincing validation for the effectiveness of the applied BO 
approach. This is typically due to the optimization problems 
being computationally intensive, which often permits only a 
limited number of optimization runs. As a consequence, 
conclusions about a methods efficiency are often drawn based 
on very small sample sizes or even single optimization runs. 

In Section IV, our experiments show that, similar to other 
BBO techniques, the performance of BO is stochastic. Hence, 
it is crucial to have a sufficiently large sample size of 
optimization trials when comparing the sampling efficiency of 
optimization methods.  

Since achieving this large number of optimization trials is 
typically not possible on the computationally intensive 
optimization problems, we introduce an approach that utilizes 
low-fidelity versions of computationally intensive 
experiments to evaluate the effectiveness of applied 
optimization techniques in a highly comparable environment. 

III. HIGH SPEED DESIGN TASK & DESIGN AUTOMATION

In this section, a design of a broadband bias-tee filter 
circuit is introduced, to which we will later apply the 
optimization methods and evaluate their performance.  

A. Design task introduction

In an automotive environment, a camera sensor unit is
connected via an RF-coax-cable to an electronic control unit 
(ECU). With this connection, a broadband video signal is 
transmitted to the ECU by a so called “Gigabit multimedia 
serial link” (GMSL) [27]. In addition, the power for the 
camera sensor unit must be transferred over the same 
connection, which requires a DC bias on the transmission line. 
Therefore, a filter circuit must be placed at both ends of the 
transmission line to separate DC and RF signal contents. Such 
a filter circuit is called a Power-over-Coax (PoC) filter, or 
more generally a bias-tee.  

The PoC filter module will be used in multiple instances 
in several high-volume Advanced Driver Assistance System 
(ADAS) products, so there is a high interest in finding 
optimized solutions. An overview of such a filter setup is 
given in Figure 2a), with a more detailed representation of the 
PoC-circuit given in Figure 2b). 

For the design of this filter circuit, there are a lot of choices 
for inductive components, resistors, and layout parameters. 
We will introduce these parameters, which will be the input 
variables 𝒙  for the optimization problem in the next 
section III.B. 

The connected SerDes components apply strict 
specifications to the RF- path given as S-parameter limits for 
the transmission and return loss (𝑆21,𝑆11). The optimization
goal is to comply with a best possible margin to these limits. 
We explain this criterium, and the design of a suitable target 
function assigning a scalar score for optimization in 
section III.C. This score will be the output 𝑦(𝒙)  of the 
optimization problem. 

In section III.D, we outline necessary automation steps 
required for the evaluation of this design, implemented in a 
state-of-the-art pythonic toolchain. This automation is crucial 
for applying any automated optimization approach, 
underscoring the increasingly important role of EDA in PCB-
design.  

B. Design variables and variable encodings

The optimization problem has 6 input design variables 𝒙,
which are shown including their boundaries in Figure 2c: 

- 𝐿1, 𝐿2, 𝐿3  : Inductors out of a set of 45 possible

inductive devices 𝑺L  consisting of coils and ferrite

beads. Each device is described by its S-parameters

and has an individual footprint. The choice to place

an electric short is also possible.

Figure 2: Setup of the Power over Coax Filter design task. a) shows the system environment consisting of a camera sensor connected to an 

ECU. b) shows an exemplary filter design setup with corresponding design variables shown in c). 
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- 𝑅 : Value of a damping resistor which is placed in

parallel to large inductors.

- 𝐶𝐿 , 𝐶𝐻: Length and height of a ground layer cutout,

placed below the inductive devices. The cutout starts

at the RF-path and has a fixed width.

While 𝑅, 𝐶L and 𝐶H can be treated as standard continuous
or discrete variables in this design, the inductive devices 
represent categorical variables as they can be described by 
multiple important physical descriptors. For the categorical 
variables, a numerical encoding must be defined, which must 
be chosen with caution in BO [28].  

A typical approach is to either use One-Hot-Encodings 
(OHE) or Integer Encodings (IE). In OHE, the physical 
descriptors of the categorical variable are neglected. The 
categorical variable with number of choices 𝑚 is mapped into 
an 𝑚 -dimensional space, with its choices distributed at 
uniform positions on orthogonal axes. Thereby all categorical 
options have the same Euclidean distance to each other, which 
results in uniform spatial correlations in BO. In contrast to 
that, in an IE a single physical descriptor is used to define an 
order for the categorical options along one axis. This results 
in smaller Euclidean distances between physically similar 
choices and thus higher spatial correlation between similar 
samples in BO.  

In the case of the inductors, multiple physical descriptors 
can be derived from their S-parameters, which are exemplarily 
shown in Figure 3. Possible descriptors for the shown 
inductors are for example the resonance frequency 𝑓r , the
maximum insertion loss 𝑆21max , metrics for the broadband
behavior, etc. Each of these descriptors can be used to define 
an IE.  

There are also more advanced methods for encoding 
categorical variables in BO, which also allow considering 
multiple physical descriptors simultaneously for variable 
encodings [2, 3, 29].  However, benchmark experiments 
presented in [29] indicate that simpler encoding approaches, 
such as using IEs in combination with standard BO 
frameworks, often achieve a competitive sampling efficiency 
to the more complex approaches when dominant physical 
descriptors are considered for the encoding. Furthermore, it is 
shown that the standard BO frameworks have a faster runtime, 
which makes them easier to use.  

This is why, in chapter IV.A we focus on comparing OHE 
and IEs based on two descriptors in particular: 𝑓r, and the area

under the 𝑆21  curve ( 𝑆21−AUC ), which acts as combined
measure of bandwidth and damping. The goal is, to identify 
the optimal variable encoding for the inductors in low-fidelity 
benchmarks, which can then be applied in high-fidelity design 
optimization. 

C. Optimization objective

The optimization objective described in this section is used
as the scalar output of our black box function 𝑦(𝒙). Figure 4 
shows the given GMSL limits for the S-parameters in red. The 
black line shows an exemplary result of a design evaluation. 
To obtain an optimization goal 𝐺 we calculate the sum of the 
distances between the evaluation results  𝑺11, 𝑺21  and their
limits adjusted by a weighting function: 

𝒅11 = 𝑺11lim − 𝑺11 ;  𝒅21 = 𝑺21 − 𝑺21lim ( 7 ) 

𝐺 =  ∑𝑤11(𝑑11i)

𝑓𝐿

i=1

+ 𝑤21(𝑑21i)
( 8 ) 

Where 𝒅  describes the distance of the S-Parameters to 
their limits and 𝑓𝐿  corresponds to the length of the
S-Parameters frequency vector. The weighting functions 𝑤11
and 𝑤21  are chosen so that limit violations are weighted
negatively, while limit compliance will contribute positively
to 𝐺:

𝑤11(𝑑) =

{

  𝑚1 + |𝑑| ∙ 0.1,   for  𝑚1 < 𝑑 

  |𝑑| ∙ 1,   for  𝑚2 < 𝑑 ≤ 𝑚1

  (|𝑑| −  𝑚2) ∙ 10,   for   0 < 𝑑 ≤  𝑚2

(|𝑑| −  𝑚2) ∙ 100,   for   𝑑 ≤ 0
( 9 ) 

𝑤21(𝑑) =  {

  |𝑑| ∙ 1 , for 𝑚3 < 𝑑 

 (|𝑑| − 𝑚3) ∙ 10, for   0 < 𝑑 ≤ 𝑚3

(|𝑑| − 𝑚3) ∙ 100, for   𝑑 ≤ 0

 
( 10 ) 

𝑚2  and 𝑚3  are defined as margins close to the limits,
which also result in a negative contribution to 𝐺 if passed (we 
choose 𝑚2 = 5 dB and 𝑚3 = 0.5 dB). 𝑚1 is a margin applied

Figure 3: 𝑆21 of some inductive devices which can be applied to the 

filter circuit. The curves can be characterized with multiple physical 

descriptors indicated by the hashed area and the marker. These 

physical descriptors can be used to find suitable variable encodings 

for the inductors. 

Figure 4: Exemplary representation of a design evaluation result. 

The colored, hashed areas depict the weighting function, with green 

areas contributing positively to 𝐺 , while orange and red areas 

contribute negatively to 𝐺.  

Page 4 of 11

https://mc.manuscriptcentral.com/tcad

Submitted for Review to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



to the return loss, limiting positive contributions of deep peaks 
(here 𝑚1 = 20 dB; The best insertion loss is inherently limited
to 0 dB).  

The weighting is visualized in Figure 4. Evaluation results 
crossing the orange and yellow regions contribute negatively 
to 𝐺, while outcomes that lie in the green regions contribute 
positively to 𝐺. The objective is to maximize 𝐺 and thereby 
the green region.  

𝐺 is a scalar value here, for the use as a single objective. 
For a multi-objective approach, 𝐺  could be modified to a 
vector, e.g. generating multiple goals for different frequency 
regions. 

D. Design Automation

A manual evaluation of this design is a time-consuming
and highly repetitive task. After deciding for a sample 𝒙, the 
evaluation process consists of the steps shown in Figure 5. We 
automated this design process using PyAEDT [30] and 
Scikit-RF [31] as explained below: 

- PCB layout adjustments:

The PCB is generated, including right footprints for

the selected inductive parts. Then, a cutout is inserted

in the ground (GND) plane below the inductors. This

process is automated using PyAEDT.

- PCB layout simulation:

In a next step, the parasitic effects of the PCB are

simulated using Ansys HFSS. The simulation

involves pre- and post-processing tasks, such as port

placements, simulation sweep setups, net naming,

etc., which are also implemented using the python

interface.

- Device connection:

Here, the S-parameters of the inductive devices are

cascaded to the simulated PCB. This step also

involves pre-processing effort, such as interpolating

S-parameters along a predefined frequency axis,

which is why we implemented this process using the

Scikit-RF toolbox.

- Result evaluation:

In a last step, the S-parameter results of the PCB with

placed inductors is evaluated and the previously

described optimization objective is computed (see

section III.C).

The runtime of evaluating a single sample is 9 minutes 
using the full wave 3D simulation (HFSS solver). The 
simulations are conducted on a workstation with an Intel Xeon 
Gold 6128 CPU and a Nvidea Quadro RTX 4000 GPU. Thus, 
the cumulative runtime of several hundred simulations 
required for optimization is in the order of several days, which 
emphasizes the importance of using as few simulation steps as 
possible.  

E. Low-fidelity benchmark designs

In the previous section, we introduced the design
automation required to evaluate the bias-tee design in a high-
fidelity setting. However, benchmarking and comparing 
optimization methods is impractical on optimization problems 
involving such computationally intensive evaluations due to 
the large amount of necessary optimization trials. Therefore, 
we introduce two low-fidelity versions of this design, which 
we use to run benchmark experiments in chapter IV and 
chapter V: 

- In a first low-fidelity version of the design task (LF1),
the placement of two inductors (corresponding to two
categorical input variables) is considered on a fixed
PCB layout. Thereby, the 3D simulation is evaluated
only once and evaluations in the benchmarks only
require cascading the S-Parameters of the inductors to
the fixed PCB, resulting in a short evaluation runtime.
This low-fidelity version of the design enables us to
evaluate the optimization methods and variable
encoding techniques in a search space, which is
highly comparable to the high-fidelity design.

- In another low-fidelity setting (LF2), we cascade the
inductors directly in a bias-tee configuration without
any layout considered. This low-fidelity function is
also fast to evaluate and is used in section V.B and
section V.C.

IV. OPTIMIZATION EXPERIMENTS

To compare the sampling efficiency of BO to other state-
of-the-art optimization methods and to analyze the impact of 
categorical variable encodings, we first evaluate benchmark 
experiments on toy functions. After that, we compute similar 
benchmarks on the low-fidelity version (LF1) of the design 
task to further analyze the performance of the considered 
methods on a function, which is comparable to the high-
fidelity experiment. The method with the highest sampling 
efficiency in the benchmarks is then applied to the high-
fidelity version of the design.  

In the benchmark experiments, we evaluate the sampling 
efficiency of the following algorithms: 

- BO using the GPyOpt [32] framework with a GP

surrogate model and a Matern52 kernel function.

Expected Improvement is used as the acquisition

function. To show the impact of different categorical

variable encodings on the sample efficiency, we test

OHE and different physical descriptor-based IEs.

Figure 5: Overview of the required automation process for the 

evaluation of the filter module. The sample is chosen by an 

optimization method, the PCB is built and simulated via PyAEDT. 

Scikit-RF is used for preprocessing, cascading the devices 

S-parameters, and to calculate the optimization goal 𝐺.
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- Genetic algorithm (GA) and particle swarm

optimization (PSO), which we both implemented

using the pymoo [33] framework. For both

algorithms, the population size was set to 20. For

other hyperparameters, we used the default values

suggested by the framework.

- Random search is used as baseline metric.

For the benchmarks we run 200 trials of each algorithm on 
every function, which results in small-sized 95% confidence 
intervals. We always show a minimization of the function 
values in the experiments (if the objective is to maximize, its 
negative is shown). All optimization methods are initialized 
with 10 random samples before the start of strategic picks. We 
defined a maximum budget (maximum number of 
observations) per trial of 200, which corresponds to 10% of 
the size of the search space when discretized axes are 
considered. 

A. Sample efficiency benchmarks

Figure 6 shows optimization benchmark experiments on
toy functions. Representations of the functions are shown in 
the top row. The second row presents the average optimization 
performance on the toy functions having two continuous axes, 
while in the third row all axes are discretized. Using 
discretized functions, we can compare the effect of using ideal 
IEs or OHE for categorical variable encodings in BO. 

On all toy functions, the BO method shows the best 
average optimization performance. On the functions with 
continuous axes, BO outperforms the other methods 
significantly in 3 of 4 experiments. Only on the Schwefel 
function, which has a lot of local optima, GA and PSO 
perform competitively.  

When considering discretized axes, we observe similar 
performances to the continuous setup. However, the choice of 
variable encoding shows a significant impact on the 
performance of BO. OHE leads to an improved performance 
on the Schwefel function, which has a higher degree of spatial 

complexity than the other functions. On the Dejong and 
Rosenbrock functions, which are smoother, IE outperforms 
OHE. 

This experiment shows on the one hand, that BO indeed 
often shows a higher sampling efficiency in comparison to 
other state-of-the-art methods. On the other hand, when 
dealing with categorical variables, the selection of a suitable 
encoding is crucial to achieve this superior optimization 
performance. 

Next, we evaluate the optimization methods using the low-
fidelity benchmark version of the design (LF1, see 
chapter III.E), where the choice of two inductors is evaluated 
on a fixed layout. Thereby, we can analyze the performance 
of BO using different encodings for the categorical input 
variables before running the computationally intensive 
optimization.  

Figure 7 shows the benchmark results of the optimization 
runs on the low-fidelity function. Again, BO outperforms the 
GA, PSO, and the random search baseline. In terms of 

Figure 6: Benchmark experiments on toy functions. The top row depicts analyzed toy functions with their global optimum highlighted with 

a green x. The middle row shows the optimization performance plots on the functions with continuous axes. The bottom row shows the 

performance on functions with discretized axes, where the impact of the variable encoding techniques can be observed (IE vs. OHE). 95% 

confidence intervals are given in the shaded area along the curves.  

Figure 7: Optimization performance comparison on a low-fidelity 

benchmark function (LF1), which is comparable to the high-fidelity 

design introduced in chapter III. The bottom right image represents 

the LF1 benchmark function with a 𝑓𝑟-IE applied to the categorical 

variables, resulting in a well-structured search space. 
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sampling efficiency, the best BO approach outperforms 
random search by a factor of 5, PSO by a factor of 3 and GA 
by a factor of 2.5.  

The variable encoding again shows a significant impact on 
the optimization performance. For instance, a random choice 
of an IE reduces the performance of the BO method to a point 
where it is even less effective than random search. This can be 
explained by the random structure induced by the random IE 
to the search space. The best performance is shown by the IE 
utilizing the 𝑓𝑟  descriptor, outperforming the other tested
physical descriptor 𝑆21−𝐴𝑈𝐶  and OHE. The image in the
bottom right corner shows the function with the 𝑓𝑟-IE applied
to the categorical input variables. This encoding results in a 
relatively smooth and well-structured function, which based 
on our previous experiments and [28] increases the probability 
of achieving a good BO performance. 

To emphasize the stochastic behavior of the discussed 
algorithms and to highlight the need of sufficiently large 
sample sizes of optimization trials when comparing 
optimization methods, Figure 8 depicts an explosion plot of 
all trials of two optimization methods applied in the previously 
shown experiment (see Figure 7). The green curves show all 
optimization trials of BO (with the 𝑓𝑟 -IE), the blue curves
illustrate the results of the GA method.  

While the best and worst runs of both optimization 
methods are comparable, on average, BO is more effective 
than the GA. This highlights that optimization methods cannot 
be compared based on single optimization runs or using a too 
small number of trials. In addition, BO does not automatically 
ensure a high sampling efficiency in single trials. Instead, BO 
increases the probability of achieving a high sample 
efficiency in a trial. 

B. High-fidelity design optimization

As indicated above, a comparison of optimization methods
is not viable on the high-fidelity design task, as the large 
runtime does not allow a large enough number of optimization 
trials. However, since the benchmark experiments were 
conducted on a benchmark function (LF1) that closely 
resembles its high-fidelity version, we can expect a similar 
optimization performance on the high-fidelity optimization 
experiment [34]. The benchmark results indicate that the BO 

method with 𝑓𝑟 -IEs performs significantly better than the
other methods, making it the best choice for the high-fidelity 
optimization. 

 Figure 9 shows the optimization results of this method 
applied to the high-fidelity optimization problem. Figure 9a) 
indicates, that the best value is found after 450 evaluations. 
The top 10 values found in the trial also stop improving within 
this region, indicating that the search space is sufficiently 
explored. The best score was achieved with the layout shown 
in Figure 9. The optimum parameter configuration proposes 
the use of two identical ferrite beads for the inductors 𝐿0 and
𝐿1  (top and middle position) and a larger inductor for 𝐿2
(bottom position). A damping resistor R in parallel to  𝐿2 was
chosen to 10kΩ. The top 10 results provide a broader image 
of optimal designs: 

- Other combinations of devices may also be used (with
their footprint impacts considered in simulation).

- 𝑆11  peaks at low frequencies can be limited  by
choosing a smaller 𝑅.

- Cutout dimensions should be chosen as large as
possible.

V. ADDITIONAL BENEFITS OF SMBO METHODS

In the previous chapter, we highlighted the sample 
efficiency of the BO method and presented its application to 
the high-fidelity design optimization. Besides this, BO offers 
other advantages, which we emphasize in this section. 
Section V.A presents how design guidelines can be derived 
based on feature sensitivity metrics. After that, in section V.B, 
it is shown how advanced surrogate models enable more 
informative surrogate model predictions. Finally, section V.C 
demonstrates the option to use transfer learning in BO, which 
can further enhance its sampling efficiency. 

Figure 8: Explosion plot of the GA and BO optimization runs on the 

low-fidelity function LF1 (see Figure 7). The best and worst runs 

are shown as dashed and dotted curves. All other runs are shown 

with a weaker opacity. 

Figure 9: a) shows the optimization score and the average score of 

the top 10 found values over the number of observations. The best 

score is here scaled to 0.1, corresponding to the best goal 𝐺). b) 

shows the S-parameter of the optimum sample, with the 

corresponding PCB-layout shown in c). 

Page 7 of 11

https://mc.manuscriptcentral.com/tcad

Submitted for Review to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A. Feature Importance

Feature importance metrics can be used to analyze the
impact of design variables on the optimization score. In a BO 
experiment, they can directly be computed after an 
optimization run using the surrogate model. Suitable methods 
for that are: 

- Feature permutation [35], which involves iteratively
permutating a feature of a test dataset while
measuring the decrease in the surrogate model’s
prediction score, such as 𝑅2.

- Model intrinsic measures, such as mean decrease of
impurity (MDI) [36] in random forest models.

- Feature elimination [37], where comparable to feature
permutation, a decrease in a test score is computed.
Instead of iteratively permutating a feature, it is
completely removed from the dataset. This requires a
retraining of the surrogate model.

For the evaluation shown in Figure 10 we apply the feature 
elimination method measuring a decrease in 𝑅2 score. We use
the data obtained by the BO trial on the high-fidelity design 
shown in section IV.B. Further, we include a random feature 
as a baseline, which should not decrease the surrogate model 
performance if removed. To consider statistical deviations, we 
applied a 10-fold cross-validation to the measurements. Also, 
the frequency range is divided into 3 parts to evaluate the 
importance of the features for different frequencies: 

- Low 𝑓:  2 MHz to 100 MHz

- Mid 𝑓:  100 MHz to 1 GHz

- High 𝑓:  1 GHz to 3.5 GHz

Figure 10 shows the calculated feature importance metrics 
of the design variables (see section III.B) for insertion loss and 
return loss scores. In general, we can observe that for low 
frequencies, 𝐿0 , 𝐿1  and 𝑅  choices are the most important
parameters. At mid to high frequencies, the 𝐿0 choice (which
is the inductance closest to the RF-path) is of highest 
importance. The layout parameters have no impact at the low 
frequency range, but their importance increases at mid and 
high frequencies. The impact of the 𝐿2  inductor is only
noticeable in the low frequency insertion loss scores, which 
can be explained by a wider design flexibility for this inductor. 

These observations can be used to derive design 
guidelines, such as: 

- The inductor responsible for high-frequency damping
should be placed nearest to the RF-path (𝐿0).

- The other inductors affect the filter performance
mostly in the low and mid frequency range.

- The cutout has the highest impact in the mid and high
frequency range and should be chosen as large as
possible.

- Modifying the damping resistor R can improve the
filter characteristic at low and mid frequencies (since
it is placed in parallel to large inductors in this
design).

These design guidelines match with the know-how of an 
experienced designer for this circuit. Extracting such 
guidelines automatically enables less experienced designers to 
understand significant correlations for a specific design task. 

B. Surrogate model utilization

More advanced surrogate models such as BNNs [13] (see
section II.A), offer higher flexibility for the input and output 
data formats in optimization settings. Besides the option to 
include higher dimensional inputs, e.g. image data, as 
auxiliary information, BNNs can directly be used to predict a 
vectorial output format. For the high-speed design introduced 
in section III, the surrogate model could for example predict 
resulting S-parameter spectra.  

In terms of sampling efficiency, benchmark experiments 
presented in [13] suggest that BNNs perform comparable to 
GP based methods when the auxiliary information is applied 
at the output. However, the more informative model outputs 
of the BNNs have the advantage that they make the acquisition 
process more explainable. Additionally, the designer obtains 
a model that allows a more in-depth exploration of the design 
space. 

Figure 11 shows predictions of a BNN used as surrogate 
model for BO applied on a low-fidelity version of the design 
task. In this low-fidelity setting, we used three choices for 
inductive devices as inputs. The output is calculated by 
cascading these devices to a bias-tee without a layout or other 
components considered (LF2, see chapter III.E). The figure 
shows BNN predictions for the 𝑆11 spectrum for a validation
sample. The predictions are recorded during the BO run, in 
which the surrogate model is trained with an increasing 
number of observations 𝑛.  

The figure shows, that the model-fit on the validation 
sample improves with increasing number of observations 

Figure 10: Feature importance calculated using the BO surrogate 

model. a) shows the feature importance on the insertion loss scores 

and b) shows the feature importance for the return loss scores. 

Page 8 of 11

https://mc.manuscriptcentral.com/tcad

Submitted for Review to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(which is also observed in the general validation score on a 
larger validation dataset). For small numbers of observations 
(at 𝑛 = 500, and  𝑛 = 1000) the BNN cannot predict resonance 
points in the spectrum. However, after 𝑛 = 6000 observed 
samples, the overall fit improves significantly, and the 
resonance frequencies can be derived from the prediction.  

For this experiment, we used an “ensemble” BNN model 
suggested by [13] in the default settings. The model fit could 
be further improved by using other BNN configurations, e.g. 
with a higher number of parameters, other BNN types or 
convolutional layers applied.  

Figure 12 shows a runtime comparison using a BNN 
surrogate model vs. a GP surrogate model for BO. The 
continuous curves show the average stepwise runtime of the 
methods, over the number of observations 𝑛 . The shaded 
regions show raw runtime measurements.  

For the GP, we observe a noisy, nonlinear increasing 
runtime, while for the BNN the increase is linear (see section 
II.A). The shaded curve of the BNN has a large margin, which
is caused by a complete retraining of the model at every 10th
observation (see [13]). By changing this retraining frequency
and the hyperparameters of the BNN itself, the gradient of the
average runtime over 𝑛 can be modified.

The experiment (with default settings applied to the 
frameworks) shows that after 1250 observations, the training 

of the BNN has a shorter runtime than the GP training. The 
cumulative runtime of the GP based method surpasses the 
BNN after 2000 observations, from where on the use of a 
BNN would be preferable.  

The experiment in Figure 11 shows, that a large quantity 
of observations is required to get a sufficient fit of the 
surrogate model to predict a vectorial output. This, combined 
with the runtime behavior shown in Figure 12, makes the 
BNN-based methods preferable for optimization experiments 
with budgets above 1000 observations.  

For optimization experiments with smaller budgets the 
GP-based methods are preferable due to the faster runtime in 
this region and less hyperparameters to choose for the 
surrogate model. However, with increasing computational 
resources or cluster-based evaluation options for other 
optimization tasks, BNNs will be a preferable option as a 
surrogate model due to their greater flexibility. 

C. Transfer learning capability

A surrogate model-based approach enables transfer
learning (TL) for optimization. This can further improve the 
sampling efficiency in BO as suggested in numerous studies 
[38, 39, 40]. 

In our experiments TL would enable to utilize low-fidelity 
data as prior information for high-fidelity optimization. This 
approach is similar to multi-fidelity optimization approaches 
such as [41, 42]. However, these multi-fidelity methods are 
often not applicable to EDA tasks because they require a 
continuously tunable fidelity parameter. EDA settings often 
allow only few fidelity options, e.g. using 2.5D or 3D 
simulations. For such problems, a TL approach using 
previously collected data of varying fidelity would be 
preferable.  

Figure 13 shows an experiment, where we evaluate a 
simple TL approach of providing a GP surrogate model with 
a prior mean, which is derived from observations sampled in 
a previous experiment. This approach is comparable to the 
MHGP method in [40]. The known data was sampled in a 
previous experiment from the so-called source function, while 
the unknown black-box function that is to be optimized is 
called the target function. 

For the experiment in Figure 13 we use both low-fidelity 
benchmark versions of the high-speed design, which are 
introduced in section III.E. Low-fidelity function LF2, which 
completely neglects any layout influences, acts as source (I.a). 
The target function (I.c) is the low-fidelity function LF1, 
where the layout remains fixed for all inductor combinations. 
Thereby, we obtain two similar functions for benchmark 
experiments, where we can compare the TL approach to the 
best performance shown in the previous benchmarks (see 
Figure 7).  

In the TL experiment we assume that the source function 
is completely known and generated a so-called “mean mask” 
(I.b) based on it. The mask elevates values that are larger than 
the source-functions mean value (black-regions), compared to 
values smaller than the mean (white-regions). We then applied 
this mask as a prior mean to the GP model used in the BO 
method. This prior should guide the BO-acquisitions on the 
target function to the lower-than-mean regions indicated by 
the mask.  

Figure 11: BNN predictions for a S-parameter spectrum over 

varying number of BO observations 𝑛. The black curve shows a  

𝑆11  vector of a validation sample. The blue curves show the 

predicted mean of the BNN trained on different training data sizes 

𝑛. For 𝑛 = 6000 the shaded area indicates the standard deviation 

of the prediction.   

Figure 12: Comparison of the stepwise BO runtime between a GP 

and a BNN surrogate model. 
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Figure 13 II.a) shows the BO performance with the TL 
applied compared to the standard approach without TL. We 
also tested an inverted mean mask to demonstrate the general 
influence of the masking. As expected, the inverted mask 
deteriorates the BO performance substantially, as it masks out 
the optimal regions of the target function. The mean mask 
performs comparable to the standard approach; however, it 
outperforms the standard approach beyond 150 observations, 
finding the global optimum more frequently than the standard 
approach. This can be caused by the reduced need for 
exploration in the TL approach, which could lead to more 
significant performance improvements in higher dimensions. 

Figure 13 III) shows heatmaps of the analyzed approaches, 
with the brighter colors indicating more frequent choices by 
the BO algorithm of certain samples in the benchmarks. The 
heatmaps clearly show the impact of the masks applied to the 
prior mean. III.b) shows that with the application of the mean-
mask the exploration in the corner and edge regions is 
significantly reduced compared to the standard approach 
(III.a).  

This experiment demonstrates the effectiveness of the TL 
approach, outlining future opportunities to further enhance the 
sampling efficiency of BO. 

VI. CONCLUSIONS

In this paper, we presented various benefits of applying 
state-of-the-art Bayesian Optimization methods to costly 
simulation tasks in the field of high-speed design. This not 
only illustrates the possibility of accelerating PCB design 
tasks using BO as a sampling efficient optimization method, 
but also indicates additional possibilities offered by the 
surrogate model-based approach.  

First, we evaluated the often-cited sampling efficiency of 
BO in comparison to other common optimization methods in 
benchmark experiments. In the conducted experiments, we 
demonstrate the superior optimization performance of BO on 
different functions, as well as the impact of categorical 
variable encodings. In addition, we emphasize that for single 
optimization runs, it is not guaranteed that BO outperforms 
other methods due to the stochastic nature of the algorithms. 
However, BO increases the probability of achieving a 
superior performance in single optimization trials.  

Using the low-fidelity benchmark function derived from 
the high-fidelity filter design task, we can show that BO 
outperforms the other optimization methods on average by a 
factor of up to 3 and the random search baseline by a factor of 
5. Based on these results, we subsequently applied the best
optimization method to the high-fidelity design. Using the
fully automated design process, we found an optimal design
for the bias tee circuit after 450 evaluations.

Besides the high sampling efficiency of BO, we 
demonstrate additional advantages of surrogate model-based 
optimization methods. On the one hand, the surrogate model 
can further be utilized to extract feature importance metrics 
and design guidelines. On the other hand, more advanced 
surrogate models, such as BNNs, make it possible to directly 
predict auxiliary information, e.g. spectral data. This enables 
further exploration of design spaces and makes acquisition 
decisions explainable. We illustrate that these advanced 
surrogate models are especially preferable in optimization 
settings with budgets above 1000 evaluations. The last 
experiment demonstrates that model-based optimization 
methods enable transfer learning, which can further increase 
the sampling efficiency of BO methods. Together with the 
other benefits presented, this provides insight into future 
directions in the application of SMBO methods. 
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